Source code for agnapprox.nets.base.resnet

"""
Properly implemented ResNet-s for CIFAR10 as described in paper [1].

The implementation and structure of this file is hugely influenced by [2]
which is implemented for ImageNet and doesn't have option A for identity.
Moreover, most of the implementations on the web is copy-paste from
torchvision's resnet and has wrong number of params.

Proper ResNet-s for CIFAR10 (for fair comparision and etc.) has following
number of layers and parameters:

name      | layers | params
ResNet20  |    20  | 0.27M
ResNet32  |    32  | 0.46M
ResNet44  |    44  | 0.66M
ResNet56  |    56  | 0.85M
ResNet110 |   110  |  1.7M
ResNet1202|  1202  | 19.4m

which this implementation indeed has.

Reference:
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
    Deep Residual Learning for Image Recognition. arXiv:1512.03385
[2] https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py

If you use this implementation in you work, please don't forget to mention the
author, Yerlan Idelbayev.
"""
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init

__all__ = [
    "ResNet",
    "resnet8",
    "resnet14",
    "resnet20",
    "resnet32",
    "resnet44",
    "resnet56",
    "resnet110",
    "resnet1202",
]


def _weights_init(module):
    if isinstance(module, (nn.Linear, nn.Conv2d)):
        init.kaiming_normal_(module.weight)


class LambdaLayer(nn.Module):
    def __init__(self, lambd):
        super(LambdaLayer, self).__init__()
        self.lambd = lambd

    def forward(self, features):
        return self.lambd(features)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1, option="A"):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(
            in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False
        )
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(
            planes, planes, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != planes:
            if option == "A":
                # For CIFAR10 ResNet paper uses option A.
                self.shortcut = LambdaLayer(
                    lambda x: F.pad(
                        x[:, :, ::2, ::2],
                        (0, 0, 0, 0, planes // 4, planes // 4),
                        "constant",
                        0,
                    )
                )
            elif option == "B":
                self.shortcut = nn.Sequential(
                    nn.Conv2d(
                        in_planes,
                        self.expansion * planes,
                        kernel_size=1,
                        stride=stride,
                        bias=False,
                    ),
                    nn.BatchNorm2d(self.expansion * planes),
                )

    def forward(self, features):
        out = F.relu(self.bn1(self.conv1(features)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(features)
        out = F.relu(out)
        return out


[docs]class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 16 self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.layer1 = self._make_layer(block, 16, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 32, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 64, num_blocks[2], stride=2) self.linear = nn.Linear(64, num_classes) self.apply(_weights_init)
[docs] def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers)
[docs] def forward(self, features): out = F.relu(self.bn1(self.conv1(features))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.avg_pool2d(out, out.size()[3]) out = out.view(out.size(0), -1) out = self.linear(out) return out
[docs]def resnet8(): return ResNet(BasicBlock, [1, 1, 1])
[docs]def resnet14(): return ResNet(BasicBlock, [2, 2, 2])
[docs]def resnet20(): return ResNet(BasicBlock, [3, 3, 3])
[docs]def resnet32(): return ResNet(BasicBlock, [5, 5, 5])
[docs]def resnet44(): return ResNet(BasicBlock, [7, 7, 7])
[docs]def resnet56(): return ResNet(BasicBlock, [9, 9, 9])
[docs]def resnet110(): return ResNet(BasicBlock, [18, 18, 18])
[docs]def resnet1202(): return ResNet(BasicBlock, [200, 200, 200])
def test(net): import numpy as np total_params = 0 for x in filter(lambda p: p.requires_grad, net.parameters()): total_params += np.prod(x.data.numpy().shape) print("Total number of params", total_params) print( "Total layers", len( list( filter( lambda p: p.requires_grad and len(p.data.size()) > 1, net.parameters(), ) ) ), ) if __name__ == "__main__": for net_name in __all__: if net_name.startswith("resnet"): print(net_name) test(globals()[net_name]()) print()